Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Tracking by means of Deep Reinforcement Learning and an Expert Demonstrator (1909.08487v1)

Published 18 Sep 2019 in cs.CV

Abstract: In the last decade many different algorithms have been proposed to track a generic object in videos. Their execution on recent large-scale video datasets can produce a great amount of various tracking behaviours. New trends in Reinforcement Learning showed that demonstrations of an expert agent can be efficiently used to speed-up the process of policy learning. Taking inspiration from such works and from the recent applications of Reinforcement Learning to visual tracking, we propose two novel trackers, A3CT, which exploits demonstrations of a state-of-the-art tracker to learn an effective tracking policy, and A3CTD, that takes advantage of the same expert tracker to correct its behaviour during tracking. Through an extensive experimental validation on the GOT-10k, OTB-100, LaSOT, UAV123 and VOT benchmarks, we show that the proposed trackers achieve state-of-the-art performance while running in real-time.

Citations (31)

Summary

We haven't generated a summary for this paper yet.