Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising (1909.08228v3)

Published 18 Sep 2019 in cs.CV

Abstract: Recently, neural architecture search (NAS) methods have attracted much attention and outperformed manually designed architectures on a few high-level vision tasks. In this paper, we propose HiNAS (Hierarchical NAS), an effort towards employing NAS to automatically design effective neural network architectures for image denoising. HiNAS adopts gradient based search strategies and employs operations with adaptive receptive field to build an flexible hierarchical search space. During the search stage, HiNAS shares cells across different feature levels to save memory and employ an early stopping strategy to avoid the collapse issue in NAS, and considerably accelerate the search speed. The proposed HiNAS is both memory and computation efficient, which takes only about 4.5 hours for searching using a single GPU. We evaluate the effectiveness of our proposed HiNAS on two different datasets, namely an additive white Gaussian noise dataset BSD500, and a realistic noise dataset SIM1800. Experimental results show that the architecture found by HiNAS has fewer parameters and enjoys a faster inference speed, while achieving highly competitive performance compared with state-of-the-art methods. We also present analysis on the architectures found by NAS. HiNAS also shows good performance on experiments for image de-raining.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haokui Zhang (31 papers)
  2. Ying Li (432 papers)
  3. Hao Chen (1006 papers)
  4. Chunhua Shen (404 papers)
Citations (57)

Summary

We haven't generated a summary for this paper yet.