Papers
Topics
Authors
Recent
Search
2000 character limit reached

Memory-Efficient Hierarchical Neural Architecture Search for Image Denoising

Published 18 Sep 2019 in cs.CV | (1909.08228v3)

Abstract: Recently, neural architecture search (NAS) methods have attracted much attention and outperformed manually designed architectures on a few high-level vision tasks. In this paper, we propose HiNAS (Hierarchical NAS), an effort towards employing NAS to automatically design effective neural network architectures for image denoising. HiNAS adopts gradient based search strategies and employs operations with adaptive receptive field to build an flexible hierarchical search space. During the search stage, HiNAS shares cells across different feature levels to save memory and employ an early stopping strategy to avoid the collapse issue in NAS, and considerably accelerate the search speed. The proposed HiNAS is both memory and computation efficient, which takes only about 4.5 hours for searching using a single GPU. We evaluate the effectiveness of our proposed HiNAS on two different datasets, namely an additive white Gaussian noise dataset BSD500, and a realistic noise dataset SIM1800. Experimental results show that the architecture found by HiNAS has fewer parameters and enjoys a faster inference speed, while achieving highly competitive performance compared with state-of-the-art methods. We also present analysis on the architectures found by NAS. HiNAS also shows good performance on experiments for image de-raining.

Citations (57)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.