Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Graphical Model Network for 2D Handpose Estimation

Published 18 Sep 2019 in cs.CV | (1909.08205v2)

Abstract: In this paper, we propose a new architecture called Adaptive Graphical Model Network (AGMN) to tackle the task of 2D hand pose estimation from a monocular RGB image. The AGMN consists of two branches of deep convolutional neural networks for calculating unary and pairwise potential functions, followed by a graphical model inference module for integrating unary and pairwise potentials. Unlike existing architectures proposed to combine DCNNs with graphical models, our AGMN is novel in that the parameters of its graphical model are conditioned on and fully adaptive to individual input images. Experiments show that our approach outperforms the state-of-the-art method used in 2D hand keypoints estimation by a notable margin on two public datasets. Code can be found at https://github.com/deyingk/agmn.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.