Papers
Topics
Authors
Recent
2000 character limit reached

Q-Learning Based Aerial Base Station Placement for Fairness Enhancement in Mobile Networks

Published 10 Sep 2019 in cs.NI, cs.LG, eess.SP, and stat.ML | (1909.08093v1)

Abstract: In this paper, we use an aerial base station (aerial-BS) to enhance fairness in a dynamic environment with user mobility. The problem of optimally placing the aerial-BS is a non-deterministic polynomial-time hard (NP-hard) problem. Moreover, the network topology is subject to continuous changes due to the user mobility. These issues intensify the quest to develop an adaptive and fast algorithm for 3D placement of the aerial-BS. To this end, we propose a method based on reinforcement learning to achieve these goals. Simulation results show that our method increases fairness among users in a reasonable computing time, while the solution is comparatively close to the optimal solution obtained by exhaustive search.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.