Q-Learning Based Aerial Base Station Placement for Fairness Enhancement in Mobile Networks
Abstract: In this paper, we use an aerial base station (aerial-BS) to enhance fairness in a dynamic environment with user mobility. The problem of optimally placing the aerial-BS is a non-deterministic polynomial-time hard (NP-hard) problem. Moreover, the network topology is subject to continuous changes due to the user mobility. These issues intensify the quest to develop an adaptive and fast algorithm for 3D placement of the aerial-BS. To this end, we propose a method based on reinforcement learning to achieve these goals. Simulation results show that our method increases fairness among users in a reasonable computing time, while the solution is comparatively close to the optimal solution obtained by exhaustive search.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.