Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Task Music Representation Learning from Multi-Label Embeddings

Published 17 Sep 2019 in cs.MM | (1909.07730v1)

Abstract: This paper presents a novel approach to music representation learning. Triplet loss based networks have become popular for representation learning in various multimedia retrieval domains. Yet, one of the most crucial parts of this approach is the appropriate selection of triplets, which is indispensable, considering that the number of possible triplets grows cubically. We present an approach to harness multi-tag annotations for triplet selection, by using Latent Semantic Indexing to project the tags onto a high-dimensional space. From this we estimate tag-relatedness to select hard triplets. The approach is evaluated in a multi-task scenario for which we introduce four large multi-tag annotations for the Million Song Dataset for the music properties genres, styles, moods, and themes.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.