Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Transfer Bayesian Optimization with Auxiliary Information (1909.07670v1)

Published 17 Sep 2019 in stat.ML, cs.AI, and cs.LG

Abstract: We propose an efficient transfer Bayesian optimization method, which finds the maximum of an expensive-to-evaluate black-box function by using data on related optimization tasks. Our method uses auxiliary information that represents the task characteristics to effectively transfer knowledge for estimating a distribution over target functions. In particular, we use a Gaussian process, in which the mean and covariance functions are modeled with neural networks that simultaneously take both the auxiliary information and feature vectors as input. With a neural network mean function, we can estimate the target function even without evaluations. By using the neural network covariance function, we can extract nonlinear correlation among feature vectors that are shared across related tasks. Our Gaussian process-based formulation not only enables an analytic calculation of the posterior distribution but also swiftly adapts the target function to observations. Our method is also advantageous because the computational costs scale linearly with the number of source tasks. Through experiments using a synthetic dataset and datasets for finding the optimal pedestrian traffic regulations and optimal machine learning algorithms, we demonstrate that our method identifies the optimal points with fewer target function evaluations than existing methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.