Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HAD-GAN: A Human-perception Auxiliary Defense GAN to Defend Adversarial Examples (1909.07558v5)

Published 17 Sep 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Adversarial examples reveal the vulnerability and unexplained nature of neural networks. Studying the defense of adversarial examples is of considerable practical importance. Most adversarial examples that misclassify networks are often undetectable by humans. In this paper, we propose a defense model to train the classifier into a human-perception classification model with shape preference. The proposed model comprising a texture transfer network (TTN) and an auxiliary defense generative adversarial networks (GAN) is called Human-perception Auxiliary Defense GAN (HAD-GAN). The TTN is used to extend the texture samples of a clean image and helps classifiers focus on its shape. GAN is utilized to form a training framework for the model and generate the necessary images. A series of experiments conducted on MNIST, Fashion-MNIST and CIFAR10 show that the proposed model outperforms the state-of-the-art defense methods for network robustness. The model also demonstrates a significant improvement on defense capability of adversarial examples.

Summary

We haven't generated a summary for this paper yet.