Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on Posterior Probability Estimation for Classifiers (1909.05894v1)

Published 12 Sep 2019 in cs.LG and stat.ML

Abstract: One of the central themes in the classification task is the estimation of class posterior probability at a new point $\bf{x}$. The vast majority of classifiers output a score for $\bf{x}$, which is monotonically related to the posterior probability via an unknown relationship. There are many attempts in the literature to estimate this latter relationship. Here, we provide a way to estimate the posterior probability without resorting to using classification scores. Instead, we vary the prior probabilities of classes in order to derive the ratio of pdf's at point $\bf{x}$, which is directly used to determine class posterior probabilities. We consider here the binary classification problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.