Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Incremental proximal gradient scheme with penalization for constrained composite convex optimization problems (1909.05060v2)

Published 11 Sep 2019 in math.OC

Abstract: We consider the problem of minimizing a finite sum of convex functions subject to the set of minimizers of a convex differentiable function. In order to solve the problem, an algorithm combining the incremental proximal gradient method with smooth penalization technique is proposed. We show the convergence of the generated sequence of iterates to an optimal solution of the optimization problems, provided that a condition expressed via the Fenchel conjugate of the constraint function is fulfilled. Finally, the functionality of the method is illustrated by some numerical experiments addressing image inpainting problems and generalized Heron problems with least squares constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.