Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence Measure Guided Single Image De-raining (1909.04207v1)

Published 10 Sep 2019 in eess.IV and cs.CV

Abstract: Single image de-raining is an extremely challenging problem since the rainy images contain rain streaks which often vary in size, direction and density. This varying characteristic of rain streaks affect different parts of the image differently. Previous approaches have attempted to address this problem by leveraging some prior information to remove rain streaks from a single image. One of the major limitations of these approaches is that they do not consider the location information of rain drops in the image. The proposed Image Quality-based single image Deraining using Confidence measure (QuDeC), network addresses this issue by learning the quality or distortion level of each patch in the rainy image, and further processes this information to learn the rain content at different scales. In addition, we introduce a technique which guides the network to learn the network weights based on the confidence measure about the estimate of both quality at each location and residual rain streak information (residual map). Extensive experiments on synthetic and real datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods.

Citations (50)

Summary

We haven't generated a summary for this paper yet.