Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Learning Based Super-Resolution DoA Estimation Utilizing Antenna Array Extrapolation (1909.02825v3)

Published 6 Sep 2019 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we introduce a novel algorithm that can dramatically reduce the number of antenna elements needed to accurately predict the direction of arrival (DOA) for multiple input multiple output (MIMO) radar. The new proposed algorithm predicts the received signal of a large antenna setup using reduced number of antenna by using coupled dictionary learning. Hence, this enables the MIMO radar to resolve more paths, which could not be resolved by the fewer antennas. Specifically, we overcome the problem of inaccurate DOA estimation due to a small virtual array setup. For example, we can use dictionary learning to predict 100 virtual array elements using only 25. To evaluate our algorithm, we used multiple signal classification (MUSIC) as a DOA estimation technique to estimate the DOA for non coherent multiple targets. The results show that using the predicted received signal, the proposed algorithm could resolve all the targets in the scene, which could not been resolved using only the received signal from the reduced antenna setup.

Summary

We haven't generated a summary for this paper yet.