Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

POD: Practical Object Detection with Scale-Sensitive Network (1909.02225v1)

Published 5 Sep 2019 in cs.CV

Abstract: Scale-sensitive object detection remains a challenging task, where most of the existing methods could not learn it explicitly and are not robust to scale variance. In addition, the most existing methods are less efficient during training or slow during inference, which are not friendly to real-time applications. In this paper, we propose a practical object detection method with scale-sensitive network.Our method first predicts a global continuous scale ,which is shared by all position, for each convolution filter of each network stage. To effectively learn the scale, we average the spatial features and distill the scale from channels. For fast-deployment, we propose a scale decomposition method that transfers the robust fractional scale into combination of fixed integral scales for each convolution filter, which exploits the dilated convolution. We demonstrate it on one-stage and two-stage algorithms under different configurations. For practical applications, training of our method is of efficiency and simplicity which gets rid of complex data sampling or optimize strategy. During test-ing, the proposed method requires no extra operation and is very supportive of hardware acceleration like TensorRT and TVM. On the COCO test-dev, our model could achieve a 41.5 mAP on one-stage detector and 42.1 mAP on two-stage detectors based on ResNet-101, outperforming base-lines by 2.4 and 2.1 respectively without extra FLOPS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Junran Peng (30 papers)
  2. Ming Sun (146 papers)
  3. Zhaoxiang Zhang (162 papers)
  4. Tieniu Tan (119 papers)
  5. Junjie Yan (109 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.