Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Experiment on Network Density and Sequential Learning (1909.02220v3)

Published 5 Sep 2019 in econ.TH, cs.SI, econ.GN, and q-fin.EC

Abstract: We conduct a sequential social-learning experiment where subjects each guess a hidden state based on private signals and the guesses of a subset of their predecessors. A network determines the observable predecessors, and we compare subjects' accuracy on sparse and dense networks. Accuracy gains from social learning are twice as large on sparse networks compared to dense networks. Models of naive inference where agents ignore correlation between observations predict this comparative static in network density, while the finding is difficult to reconcile with rational-learning models.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com