Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Anomaly Detection in Chaotic Time Series with a Spatially Aware Echo State Network

Published 2 Sep 2019 in cs.NE, cs.LG, and stat.ML | (1909.01709v1)

Abstract: This work builds an automated anomaly detection method for chaotic time series, and more concretely for turbulent, high-dimensional, ocean simulations. We solve this task by extending the Echo State Network by spatially aware input maps, such as convolutions, gradients, cosine transforms, et cetera, as well as a spatially aware loss function. The spatial ESN is used to create predictions which reduce the detection problem to thresholding of the prediction error. We benchmark our detection framework on different tasks of increasing difficulty to show the generality of the framework before applying it to raw climate model output in the region of the Japanese ocean current Kuroshio, which exhibits a bimodality that is not easily detected by the naked eye. The code is available as an open source Python package, Torsk, available at https://github.com/nmheim/torsk, where we also provide supplementary material and programs that reproduce the results shown in this paper.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.