Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Estimation of OD Demands and Cost Functions in Transportation Networks from Data (1909.00941v1)

Published 3 Sep 2019 in math.OC, cs.SY, and eess.SY

Abstract: Existing work has tackled the problem of estimating Origin-Destination (OD) demands and recovering travel latency functions in transportation networks under the Wardropian assumption. The ultimate objective is to derive an accurate predictive model of the network to enable optimization and control. However, these two problems are typically treated separately and estimation is based on parametric models. In this paper, we propose a method to jointly recover nonparametric travel latency cost functions and estimate OD demands using traffic flow data. We formulate the problem as a bilevel optimization problem and develop an iterative first-order optimization algorithm to solve it. A numerical example using the Braess Network is presented to demonstrate the effectiveness of our method.

Citations (7)

Summary

We haven't generated a summary for this paper yet.