Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

GrAALF:Supporting Graphical Analysis of Audit Logs for Forensics (1909.00902v2)

Published 3 Sep 2019 in cs.CR

Abstract: System-level audit logs often play a critical role in computer forensics. They capture low-level interactions between programs and users in much detail, making them a rich source of insight and provenance on malicious user activity. However, using these logs to discover and understand malicious activities when a typical computer generates more than 2.5 million system events hourly is both compute and time-intensive. We introduce a graphical system called GrAALF for efficiently loading, storing, processing, querying, and displaying system events to support computer forensics. In comparison to other related systems such as AIQL [13] and SAQL [12], GrAALF offers the flexibility of multiple backend storage solutions, easy-to-use and intuitive querying of logs, and the ability to trace back longer sequences of system events in (near) real-time to help identify and isolate attacks. Equally important, both AIQL and SAQL are not available for public use, whereas GrAALF is open-source. GrAALF offers the choice of compactly storing the logs in main memory, in a relational database system, in a hybrid main memory-database system, and a graph-based database. We compare the responsiveness of each of these options, using multiple huge system-call log files. Next, in multiple real-world attack scenarios, we demonstrate the efficacy and usefulness of GrAALF in identifying the attack and discovering its provenance. Consequently, GrAALF offers a robust solution for analysis of audit logs to support computer forensics.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.