Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance comparison of 3D correspondence grouping algorithm for 3D plant point clouds (1909.00866v1)

Published 2 Sep 2019 in cs.CV

Abstract: Plant Phenomics can be used to monitor the health and the growth of plants. Computer vision applications like stereo reconstruction, image retrieval, object tracking, and object recognition play an important role in imaging based plant phenotyping. This paper offers a comparative evaluation of some popular 3D correspondence grouping algorithms, motivated by the important role that they can play in tasks such as model creation, plant recognition and identifying plant parts. Another contribution of this paper is the extension of 2D maximum likelihood matching to 3D Maximum Likelihood Estimation Sample Consensus (MLEASAC). MLESAC is efficient and is computationally less intense than 3D random sample consensus (RANSAC). We test these algorithms on 3D point clouds of plants along with two standard benchmarks addressing shape retrieval and point cloud registration scenarios. The performance is evaluated in terms of precision and recall.

Citations (2)

Summary

We haven't generated a summary for this paper yet.