Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nonparametric Bayesian estimation of a concave distribution function with mixed interval censored data (1909.00625v2)

Published 2 Sep 2019 in math.ST and stat.TH

Abstract: Assume we observe a finite number of inspection times together with information on whether a specific event has occurred before each of these times. Suppose replicated measurements are available on multiple event times. The set of inspection times, including the number of inspections, may be different for each event. This is known as mixed case interval censored data. We consider Bayesian estimation of the distribution function of the event time while assuming it is concave. We provide sufficient conditions on the prior such that the resulting procedure is consistent from the Bayesian point of view. We also provide computational methods for drawing from the posterior and illustrate the performance of the Bayesian method in both a simulation study and two real datasets.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube