Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revenue-Optimal Deterministic Auctions for Multiple Buyers with Ordinal Preferences over Fixed-price Items (1909.00425v3)

Published 1 Sep 2019 in cs.GT

Abstract: In this paper, we introduce a Bayesian revenue-maximizing mechanism design model where the items have fixed, exogenously-given prices. Buyers are unit-demand and have an ordinal ranking over purchasing either one of these items at its given price, or purchasing nothing. This model arises naturally from the assortment optimization problem, in that the single-buyer optimization problem over deterministic mechanisms reduces to deciding on an assortment of items to "show". We study its multi-buyer generalization in the simplest setting of single-winner auctions, or more broadly, any service-constrained environment. Our main result is that if the buyer rankings are drawn independently from Markov Chain ranking models, then the optimal mechanism is computationally tractable, and structurally a virtual welfare maximizer. We also show that for ranking distributions not induced by Markov Chains, the optimal mechanism may not be a virtual welfare maximizer.

Citations (2)

Summary

We haven't generated a summary for this paper yet.