Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QuASE: Question-Answer Driven Sentence Encoding (1909.00333v3)

Published 1 Sep 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Question-answering (QA) data often encodes essential information in many facets. This paper studies a natural question: Can we get supervision from QA data for other tasks (typically, non-QA ones)? For example, {\em can we use QAMR (Michael et al., 2017) to improve named entity recognition?} We suggest that simply further pre-training BERT is often not the best option, and propose the {\em question-answer driven sentence encoding (QuASE)} framework. QuASE learns representations from QA data, using BERT or other state-of-the-art contextual LLMs. In particular, we observe the need to distinguish between two types of sentence encodings, depending on whether the target task is a single- or multi-sentence input; in both cases, the resulting encoding is shown to be an easy-to-use plugin for many downstream tasks. This work may point out an alternative way to supervise NLP tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.