Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

CUPCF: Combining Users Preferences in Collaborative Filtering for Better Recommendation (1908.05609v1)

Published 13 Aug 2019 in cs.IR and cs.SI

Abstract: How to make the best decision between the opinions and tastes of your friends and acquaintances? Therefore, recommender systems are used to solve such issues. The common algorithms use a similarity measure to predict active users' tastes over a particular item. According to the cold start and data sparsity problems, these systems cannot predict and suggest particular items to users. In this paper, we introduce a new recommender system is able to find user preferences and based on it, provides the recommendations. Our proposed system called CUPCF is a combination of two similarity measures in collaborative filtering to solve the data sparsity problem and poor prediction (high prediction error rate) problems for better recommendation. The experimental results based on MovieLens dataset show that, combined with the preferences of the user's nearest neighbor, the proposed system error rate compared to a number of state-of-the-art recommendation methods improved. Furthermore, the results indicate the efficiency of CUPCF. The maximum improved error rate of the system is 15.5% and the maximum values of Accuracy, Precision and Recall of CUPCF are 0.91402, 0.91436 and 0.9974 respectively.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.