Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FNHSM_HRS: Hybrid recommender system using fuzzy clustering and heuristic similarity measure (1909.13765v1)

Published 26 Sep 2019 in cs.IR and cs.LG

Abstract: Nowadays, Recommender Systems have become a comprehensive system for helping and guiding users in a huge amount of data on the Internet. Collaborative Filtering offers to active users based on the rating of a set of users. One of the simplest and most comprehensible and successful models is to find users with a taste in recommender systems. In this model, with increasing number of users and items, the system is faced to scalability problem. On the other hand, improving system performance when there is little information available from ratings, that is important. In this paper, a hybrid recommender system called FNHSM_HRS which is based on the new heuristic similarity measure (NHSM) along with a fuzzy clustering is presented. Using the fuzzy clustering method in the proposed system improves the scalability problem and increases the accuracy of system recommendations. The proposed system is based on the collaborative filtering model and is partnered with the heuristic similarity measure to improve the system's performance and accuracy. The evaluation of the proposed system based results on the MovieLens dataset carried out the results using MAE, Recall, Precision and Accuracy measures Indicating improvement in system performance and increasing the accuracy of recommendation to collaborative filtering methods which use other measures to find similarities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.