Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAX Navigator: Time Series Exploration through Hierarchical Clustering (1908.05505v1)

Published 15 Aug 2019 in cs.HC

Abstract: Comparing many long time series is challenging to do by hand. Clustering time series enables data analysts to discover relevance between and anomalies among multiple time series. However, even after reasonable clustering, analysts have to scrutinize correlations between clusters or similarities within a cluster. We developed SAX Navigator, an interactive visualization tool, that allows users to hierarchically explore global patterns as well as individual observations across large collections of time series data. Our visualization provides a unique way to navigate time series that involves a "vocabulary of patterns" developed by using a dimensionality reduction technique,Symbolic Aggregate approXimation(SAX). With SAX, the time series data clusters efficiently and is quicker to query at scale. We demonstrate the ability of SAX Navigator to analyze patterns in large time series data based on three case studies for an astronomy data set. We verify the usability of our system through a think-aloud study with an astronomy domain scientist.

Citations (13)

Summary

We haven't generated a summary for this paper yet.