Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Deformable Filter Convolution for Point Cloud Reasoning (1907.13079v1)

Published 30 Jul 2019 in cs.CV

Abstract: Point clouds are the native output of many real-world 3D sensors. To borrow the success of 2D convolutional network architectures, a majority of popular 3D perception models voxelize the points, which can result in a loss of local geometric details that cannot be recovered. In this paper, we propose a novel learnable convolution layer for processing 3D point cloud data directly. Instead of discretizing points into fixed voxels, we deform our learnable 3D filters to match with the point cloud shape. We propose to combine voxelized backbone networks with our deformable filter layer at 1) the network input stream and 2) the output prediction layers to enhance point level reasoning. We obtain state-of-the-art results on LiDAR semantic segmentation and producing a significant gain in performance on LiDAR object detection.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.