Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Adversarial Network for Handwritten Text (1907.11845v3)

Published 27 Jul 2019 in cs.LG and cs.CV

Abstract: Generative adversarial networks (GANs) have proven hugely successful in variety of applications of image processing. However, generative adversarial networks for handwriting is relatively rare somehow because of difficulty of handling sequential handwriting data by Convolutional Neural Network (CNN). In this paper, we propose a handwriting generative adversarial network framework (HWGANs) for synthesizing handwritten stroke data. The main features of the new framework include: (i) A discriminator consists of an integrated CNN-Long-Short-Term- Memory (LSTM) based feature extraction with Path Signature Features (PSF) as input and a Feedforward Neural Network (FNN) based binary classifier; (ii) A recurrent latent variable model as generator for synthesizing sequential handwritten data. The numerical experiments show the effectivity of the new model. Moreover, comparing with sole handwriting generator, the HWGANs synthesize more natural and realistic handwritten text.

Citations (26)

Summary

We haven't generated a summary for this paper yet.