Papers
Topics
Authors
Recent
Search
2000 character limit reached

Association rule mining and itemset-correlation based variants

Published 22 Jul 2019 in cs.DB and cs.IR | (1907.09535v1)

Abstract: Association rules express implication formed relations among attributes in databases of itemsets. The apriori algorithm is presented, the basis for most association rule mining algorithms. It works by pruning away rules that need not be evaluated based on the user specified minimum support confidence. Additionally, variations of the algorithm are presented that enable it to handle quantitative attributes and to extract rules about generalizations of items, but preserve the downward closure property that enables pruning. Intertransformation of the extensions is proposed for special cases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.