Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ParaFIS:A new online fuzzy inference system based on parallel drift anticipation (1907.09285v1)

Published 15 Jul 2019 in cs.AI, cs.LG, and cs.NE

Abstract: This paper proposes a new architecture of incremen-tal fuzzy inference system (also called Evolving Fuzzy System-EFS). In the context of classifying data stream in non stationary environment, concept drifts problems must be addressed. Several studies have shown that EFS can deal with such environment thanks to their high structural flexibility. These EFS perform well with smooth drift (or incremental drift). The new architecture we propose is focused on improving the processing of brutal changes in the data distribution (often called brutal concept drift). More precisely, a generalized EFS is paired with a module of anticipation to improve the adaptation of new rules after a brutal drift. The proposed architecture is evaluated on three datasets from UCI repository where artificial brutal drifts have been applied. A fit model is also proposed to get a "reactivity time" needed to converge to the steady-state and the score at end. Both characteristics are compared between the same system with and without anticipation and with a similar EFS from state-of-the-art. The experiments demonstrates improvements in both cases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.