Strong and weak convergence in the averaging principle for SDEs with Hölder coefficients
Abstract: Using Zvonkin's transform and the Poisson equation in $Rd$ with a parameter, we prove the averaging principle for stochastic differential equations with time-dependent H\"older continuous coefficients. Sharp convergence rates with order $(\alpha\wedge1)/2$ in the strong sense and $(\alpha/2)\wedge1$ in the weak sense are obtained, considerably extending the existing results in the literature. Moreover, we prove that the convergence of the multi-scale system to the effective equation depends only on the regularity of the coefficients of the equation for the slow variable, and does not depend on the regularity of the coefficients of the equation for the fast component.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.