Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Today Me, Tomorrow Thee: Efficient Resource Allocation in Competitive Settings using Karma Games (1907.09198v1)

Published 22 Jul 2019 in cs.MA, cs.AI, and cs.GT

Abstract: We present a new type of coordination mechanism among multiple agents for the allocation of a finite resource, such as the allocation of time slots for passing an intersection. We consider the setting where we associate one counter to each agent, which we call karma value, and where there is an established mechanism to decide resource allocation based on agents exchanging karma. The idea is that agents might be inclined to pass on using resources today, in exchange for karma, which will make it easier for them to claim the resource use in the future. To understand whether such a system might work robustly, we only design the protocol and not the agents' policies. We take a game-theoretic perspective and compute policies corresponding to Nash equilibria for the game. We find, surprisingly, that the Nash equilibria for a society of self-interested agents are very close in social welfare to a centralized cooperative solution. These results suggest that many resource allocation problems can have a simple, elegant, and robust solution, assuming the availability of a karma accounting mechanism.

Citations (18)

Summary

We haven't generated a summary for this paper yet.