Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning dynamic word embeddings with drift regularisation (1907.09169v1)

Published 22 Jul 2019 in cs.CL and cs.LG

Abstract: Word usage, meaning and connotation change throughout time. Diachronic word embeddings are used to grasp these changes in an unsupervised way. In this paper, we use variants of the Dynamic Bernoulli Embeddings model to learn dynamic word embeddings, in order to identify notable properties of the model. The comparison is made on the New York Times Annotated Corpus in English and a set of articles from the French newspaper Le Monde covering the same period. This allows us to define a pipeline to analyse the evolution of words use across two languages.

Summary

We haven't generated a summary for this paper yet.