Papers
Topics
Authors
Recent
Search
2000 character limit reached

Groupoids and Coherent states

Published 21 Jul 2019 in quant-ph, math-ph, and math.MP | (1907.09010v2)

Abstract: Schwinger's algebra of selective measurements has a natural interpretation in terms of groupoids. This approach is pushed forward in this paper to show that the theory of coherent states has a natural setting in the framework of groupoids. Thus given a quantum mechanical system with associated Hilbert space determined by a representation of a groupoid, it is shown that any invariant subset of the group of invertible elements in the groupoid algebra determines a family of generalized coherent states provided that a completeness condition is satisfied. The standard coherent states for the harmonic oscillator as well as generalized coherent states for f-oscillators are exemplified in this picture.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.