Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conversational Help for Task Completion and Feature Discovery in Personal Assistants (1907.07564v1)

Published 16 Jul 2019 in cs.HC, cs.CL, cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: Intelligent Personal Assistants (IPAs) have become widely popular in recent times. Most of the commercial IPAs today support a wide range of skills including Alarms, Reminders, Weather Updates, Music, News, Factual Questioning-Answering, etc. The list grows every day, making it difficult to remember the command structures needed to execute various tasks. An IPA must have the ability to communicate information about supported skills and direct users towards the right commands needed to execute them. Users interact with personal assistants in natural language. A query is defined to be a Help Query if it seeks information about a personal assistant's capabilities, or asks for instructions to execute a task. In this paper, we propose an interactive system which identifies help queries and retrieves appropriate responses. Our system comprises of a C-BiLSTM based classifier, which is a fusion of Convolutional Neural Networks (CNN) and Bidirectional LSTM (BiLSTM) architectures, to detect help queries and a semantic Approximate Nearest Neighbours (ANN) module to map the query to an appropriate predefined response. Evaluation of our system on real-world queries from a commercial IPA and a detailed comparison with popular traditional machine learning and deep learning based models reveal that our system outperforms other approaches and returns relevant responses for help queries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.