Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relation Network for Multi-label Aerial Image Classification (1907.07274v3)

Published 16 Jul 2019 in cs.CV

Abstract: Multi-label classification plays a momentous role in perceiving intricate contents of an aerial image and triggers several related studies over the last years. However, most of them deploy few efforts in exploiting label relations, while such dependencies are crucial for making accurate predictions. Although an LSTM layer can be introduced to modeling such label dependencies in a chain propagation manner, the efficiency might be questioned when certain labels are improperly inferred. To address this, we propose a novel aerial image multi-label classification network, attention-aware label relational reasoning network. Particularly, our network consists of three elemental modules: 1) a label-wise feature parcel learning module, 2) an attentional region extraction module, and 3) a label relational inference module. To be more specific, the label-wise feature parcel learning module is designed for extracting high-level label-specific features. The attentional region extraction module aims at localizing discriminative regions in these features and yielding attentional label-specific features. The label relational inference module finally predicts label existences using label relations reasoned from outputs of the previous module. The proposed network is characterized by its capacities of extracting discriminative label-wise features in a proposal-free way and reasoning about label relations naturally and interpretably. In our experiments, we evaluate the proposed model on the UCM multi-label dataset and a newly produced dataset, AID multi-label dataset. Quantitative and qualitative results on these two datasets demonstrate the effectiveness of our model. To facilitate progress in the multi-label aerial image classification, the AID multi-label dataset will be made publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuansheng Hua (16 papers)
  2. Lichao Mou (50 papers)
  3. Xiao Xiang Zhu (201 papers)
Citations (78)

Summary

We haven't generated a summary for this paper yet.