Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal deep networks for text and image-based document classification (1907.06370v1)

Published 15 Jul 2019 in cs.CV

Abstract: Classification of document images is a critical step for archival of old manuscripts, online subscription and administrative procedures. Computer vision and deep learning have been suggested as a first solution to classify documents based on their visual appearance. However, achieving the fine-grained classification that is required in real-world setting cannot be achieved by visual analysis alone. Often, the relevant information is in the actual text content of the document. We design a multimodal neural network that is able to learn from word embeddings, computed on text extracted by OCR, and from the image. We show that this approach boosts pure image accuracy by 3% on Tobacco3482 and RVL-CDIP augmented by our new QS-OCR text dataset (https://github.com/Quicksign/ocrized-text-dataset), even without clean text information.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nicolas Audebert (27 papers)
  2. Catherine Herold (3 papers)
  3. Kuider Slimani (1 paper)
  4. Cédric Vidal (1 paper)
Citations (90)