Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts (1907.05715v2)

Published 11 Jul 2019 in cs.LG and stat.ML

Abstract: We analyze architectural features of Deep Neural Networks (DNNs) using the so-called Neural Tangent Kernel (NTK), which describes the training and generalization of DNNs in the infinite-width setting. In this setting, we show that for fully-connected DNNs, as the depth grows, two regimes appear: "order", where the (scaled) NTK converges to a constant, and "chaos", where it converges to a Kronecker delta. Extreme order slows down training while extreme chaos hinders generalization. Using the scaled ReLU as a nonlinearity, we end up in the ordered regime. In contrast, Layer Normalization brings the network into the chaotic regime. We observe a similar effect for Batch Normalization (BN) applied after the last nonlinearity. We uncover the same order and chaos modes in Deep Deconvolutional Networks (DC-NNs). Our analysis explains the appearance of so-called checkerboard patterns and border artifacts. Moving the network into the chaotic regime prevents checkerboard patterns; we propose a graph-based parametrization which eliminates border artifacts; finally, we introduce a new layer-dependent learning rate to improve the convergence of DC-NNs. We illustrate our findings on DCGANs: the ordered regime leads to a collapse of the generator to a checkerboard mode, which can be avoided by tuning the nonlinearity to reach the chaotic regime. As a result, we are able to obtain good quality samples for DCGANs without BN.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.