Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BASN -- Learning Steganography with Binary Attention Mechanism (1907.04362v1)

Published 9 Jul 2019 in cs.CV and cs.MM

Abstract: Secret information sharing through image carrier has aroused much research attention in recent years with images' growing domination on the Internet and mobile applications. However, with the booming trend of convolutional neural networks, image steganography is facing a more significant challenge from neural-network-automated tasks. To improve the security of image steganography and minimize task result distortion, models must maintain the feature maps generated by task-specific networks being irrelative to any hidden information embedded in the carrier. This paper introduces a binary attention mechanism into image steganography to help alleviate the security issue, and in the meanwhile, increase embedding payload capacity. The experimental results show that our method has the advantage of high payload capacity with little feature map distortion and still resist detection by state-of-the-art image steganalysis algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.