Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting Biorthogonal Polynomials. An $LU$ factorization discussion

Published 9 Jul 2019 in math.CA, math-ph, and math.MP | (1907.04280v1)

Abstract: The Gauss-Borel or $LU$ factorization of Gram matrices of bilinear forms is the pivotal element in the discussion of the theory of biorthogonal polynomials. The construction of biorthogonal families of polynomials and its second kind functions, of the spectral matrices modeling the multiplication by the independent variable $x$, the Christoffel-Darboux kernel and its projection properties, are discussed from this point of view. Then, the Hankel case is presented and different properties, specific of this case, as the three terms relations, Heine formulas, Gauss quadrature and the Christoffel-Darboux formula are given. The classical orthogonal polynomial of Hermite, Laguerre and Jacobi type are discussed and characterized within this scheme. Finally, it is shown who this approach is instrumental in the derivation of Christoffel formulas for general Christoffel and Geronimus perturbations of the bilinear forms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.