Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets

Published 5 Jul 2019 in cs.CV, cs.AI, cs.LG, and cs.MM | (1907.03030v1)

Abstract: This paper targets the problem of image set-based face verification and identification. Unlike traditional single media (an image or video) setting, we encounter a set of heterogeneous contents containing orderless images and videos. The importance of each image is usually considered either equal or based on their independent quality assessment. How to model the relationship of orderless images within a set remains a challenge. We address this problem by formulating it as a Markov Decision Process (MDP) in the latent space. Specifically, we first present a dependency-aware attention control (DAC) network, which resorts to actor-critic reinforcement learning for sequential attention decision of each image embedding to fully exploit the rich correlation cues among the unordered images. Moreover, we introduce its sample-efficient variant with off-policy experience replay to speed up the learning process. The pose-guided representation scheme can further boost the performance at the extremes of the pose variation.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.