Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Duality for Bethe algebras acting on polynomials in anticommuting variables (1907.02117v2)

Published 3 Jul 2019 in math.QA

Abstract: We consider actions of the current Lie algebras $\mathfrak{gl}{n}[t]$ and $\mathfrak{gl}{k}[t]$ on the space of polynomials in $kn$ anticommuting variables. The actions depend on parameters $\bar{z}=(z_{1}\dots z_{k})$ and $\bar{\alpha}=(\alpha_{1}\dots \alpha_{n})$, respectively. We show that the images of the Bethe algebras $\mathcal{B}{\bar{\alpha}}{\langle n \rangle}\subset U(\mathfrak{gl}{n}[t])$ and $\mathcal{B}{\bar{z}}{\langle k \rangle}\subset U(\mathfrak{gl}{k}[t])$ under these actions coincide. To prove the statement, we use the Bethe ansatz description of eigenvalues of the actions of the Bethe algebras via spaces of quasi-exponentials and establish an explicit correspondence between these spaces for the actions of $\mathcal{B}{\bar{\alpha}}{\langle n \rangle}$ and $\mathcal{B}{\bar{z}}{\langle k \rangle}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.