Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Overlap and a Comparison of Parameter-Free, Dimensionality Reduction Quality Metrics (1907.01974v2)

Published 3 Jul 2019 in stat.ML and cs.LG

Abstract: Nonlinear dimensionality reduction methods are a popular tool for data scientists and researchers to visualize complex, high dimensional data. However, while these methods continue to improve and grow in number, it is often difficult to evaluate the quality of a visualization due to a variety of factors such as lack of information about the intrinsic dimension of the data and additional tuning required for many evaluation metrics. In this paper, we seek to provide a systematic comparison of dimensionality reduction quality metrics using datasets where we know the ground truth manifold. We utilize each metric for hyperparameter optimization in popular dimensionality reduction methods used for visualization and provide quantitative metrics to objectively compare visualizations to their original manifold. In our results, we find a few methods that appear to consistently do well and propose the best performer as a benchmark for evaluating dimensionality reduction based visualizations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jonathan Johannemann (2 papers)
  2. Robert Tibshirani (81 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.