Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Framework for Evaluating Snippet Generation for Dataset Search (1907.01183v1)

Published 2 Jul 2019 in cs.IR and cs.DB

Abstract: Reusing existing datasets is of considerable significance to researchers and developers. Dataset search engines help a user find relevant datasets for reuse. They can present a snippet for each retrieved dataset to explain its relevance to the user's data needs. This emerging problem of snippet generation for dataset search has not received much research attention. To provide a basis for future research, we introduce a framework for quantitatively evaluating the quality of a dataset snippet. The proposed metrics assess the extent to which a snippet matches the query intent and covers the main content of the dataset. To establish a baseline, we adapt four state-of-the-art methods from related fields to our problem, and perform an empirical evaluation based on real-world datasets and queries. We also conduct a user study to verify our findings. The results demonstrate the effectiveness of our evaluation framework, and suggest directions for future research.

Citations (12)

Summary

We haven't generated a summary for this paper yet.