Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Intelligent Authentication in 5G-and-Beyond Wireless Networks (1907.00429v2)

Published 30 Jun 2019 in cs.CR, cs.LG, and stat.ML

Abstract: The fifth generation (5G) and beyond wireless networks are critical to support diverse vertical applications by connecting heterogeneous devices and machines, which directly increase vulnerability for various spoofing attacks. Conventional cryptographic and physical layer authentication techniques are facing some challenges in complex dynamic wireless environments, including significant security overhead, low reliability, as well as difficulty in pre-designing authentication model, providing continuous protections, and learning time-varying attributes. In this article, we envision new authentication approaches based on machine learning techniques by opportunistically leveraging physical layer attributes, and introduce intelligence to authentication for more efficient security provisioning. Machine learning paradigms for intelligent authentication design are presented, namely for parametric/non-parametric and supervised/unsupervised/reinforcement learning algorithms. In a nutshell, the machine learning-based intelligent authentication approaches utilize specific features in the multi-dimensional domain for achieving cost-effective, more reliable, model-free, continuous and situation-aware device validation under unknown network conditions and unpredictable dynamics.

Citations (97)

Summary

We haven't generated a summary for this paper yet.