Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaboration of AI Agents via Cooperative Multi-Agent Deep Reinforcement Learning (1907.00327v1)

Published 30 Jun 2019 in cs.MA, cs.AI, and cs.CV

Abstract: There are many AI tasks involving multiple interacting agents where agents should learn to cooperate and collaborate to effectively perform the task. Here we develop and evaluate various multi-agent protocols to train agents to collaborate with teammates in grid soccer. We train and evaluate our multi-agent methods against a team operating with a smart hand-coded policy. As a baseline, we train agents concurrently and independently, with no communication. Our collaborative protocols were parameter sharing, coordinated learning with communication, and counterfactual policy gradients. Against the hand-coded team, the team trained with parameter sharing and the team trained with coordinated learning performed the best, scoring on 89.5% and 94.5% of episodes respectively when playing against the hand-coded team. Against the parameter sharing team, with adversarial training the coordinated learning team scored on 75% of the episodes, indicating it is the most adaptable of our methods. The insights gained from our work can be applied to other domains where multi-agent collaboration could be beneficial.

Citations (5)

Summary

We haven't generated a summary for this paper yet.