Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SurReal: Fréchet Mean and Distance Transform for Complex-Valued Deep Learning (1906.10048v1)

Published 24 Jun 2019 in cs.CV

Abstract: We develop a novel deep learning architecture for naturally complex-valued data, which is often subject to complex scaling ambiguity. We treat each sample as a field in the space of complex numbers. With the polar form of a complex-valued number, the general group that acts in this space is the product of planar rotation and non-zero scaling. This perspective allows us to develop not only a novel convolution operator using weighted Fr\'echet mean (wFM) on a Riemannian manifold, but also a novel fully connected layer operator using the distance to the wFM, with natural equivariant properties to non-zero scaling and planar rotation for the former and invariance properties for the latter. Compared to the baseline approach of learning real-valued neural network models on the two-channel real-valued representation of complex-valued data, our method achieves surreal performance on two publicly available complex-valued datasets: MSTAR on SAR images and RadioML on radio frequency signals. On MSTAR, at 8% of the baseline model size and with fewer than 45,000 parameters, our model improves the target classification accuracy from 94% to 98% on this highly imbalanced dataset. On RadioML, our model achieves comparable RF modulation classification accuracy at 10% of the baseline model size.

Citations (14)

Summary

We haven't generated a summary for this paper yet.