Papers
Topics
Authors
Recent
Search
2000 character limit reached

The NN-Stacking: Feature weighted linear stacking through neural networks

Published 24 Jun 2019 in cs.LG, stat.ME, and stat.ML | (1906.09735v1)

Abstract: Stacking methods improve the prediction performance of regression models. A simple way to stack base regressions estimators is by combining them linearly, as done by \citet{breiman1996stacked}. Even though this approach is useful from an interpretative perspective, it often does not lead to high predictive power. We propose the NN-Stacking method (NNS), which generalizes Breiman's method by allowing the linear parameters to vary with input features. This improvement enables NNS to take advantage of the fact that distinct base models often perform better at different regions of the feature space. Our method uses neural networks to estimate the stacking coefficients. We show that while our approach keeps the interpretative features of Breiman's method at a local level, it leads to better predictive power, especially in datasets with large sample sizes.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.