Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved Confidence Regions in Meta-analysis of Diagnostic Test Accuracy

Published 20 Jun 2019 in stat.ME | (1906.08428v2)

Abstract: Meta-analyses of diagnostic test accuracy (DTA) studies have been gathering attention in research in clinical epidemiology and health technology development, and bivariate random-effects model is becoming a standard tool. However, standard inference methods usually underestimate statistical errors and possibly provide highly overconfident results under realistic situations since they ignore the variability in the estimation of variance parameters. To overcome the difficulty, a new improved inference method, namely, an accurate confidence region for the meta-analysis of DTA, by asymptotically expanding the coverage probability of the standard confidence region. The advantage of the proposed confidence region is that it holds a relatively simple expression and does not require any repeated calculations such as Bootstrap or Monte Carlo methods to compute the region, thereby the proposed method can be easily carried out in practical applications. The effectiveness of the proposed method is demonstrated through simulation studies and an application to meta-analysis of screening test accuracy for alcohol problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.