Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables (1906.07429v1)

Published 18 Jun 2019 in cs.CL

Abstract: Multi-turn conversations consist of complex semantic structures, and it is still a challenge to generate coherent and diverse responses given previous utterances. It's practical that a conversation takes place under a background, meanwhile, the query and response are usually most related and they are consistent in topic but also different in content. However, little work focuses on such hierarchical relationship among utterances. To address this problem, we propose a Conversational Semantic Relationship RNN (CSRR) model to construct the dependency explicitly. The model contains latent variables in three hierarchies. The discourse-level one captures the global background, the pair-level one stands for the common topic information between query and response, and the utterance-level ones try to represent differences in content. Experimental results show that our model significantly improves the quality of responses in terms of fluency, coherence and diversity compared to baseline methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lei Shen (91 papers)
  2. Yang Feng (230 papers)
  3. Haolan Zhan (27 papers)
Citations (29)