Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

2nd Place and 2nd Place Solution to Kaggle Landmark Recognition andRetrieval Competition 2019 (1906.03990v2)

Published 10 Jun 2019 in cs.CV

Abstract: We present a retrieval based system for landmark retrieval and recognition challenge.There are five parts in retrieval competition system, including feature extraction and matching to get candidates queue; database augmentation and query extension searching; reranking from recognition results and local feature matching. In recognition challenge including: landmark and non-landmark recognition, multiple recognition results voting and reranking using combination of recognition and retrieval results. All of models trained and predicted by PaddlePaddle framework. Using our method, we achieved 2nd place in the Google Landmark Recognition 2019 and 2nd place in the Google Landmark Retrieval 2019 on kaggle. The source code is available at here.

Citations (6)

Summary

We haven't generated a summary for this paper yet.