Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proposed Guidelines for the Responsible Use of Explainable Machine Learning (1906.03533v3)

Published 8 Jun 2019 in stat.ML, cs.AI, and cs.LG

Abstract: Explainable ML enables human learning from ML, human appeal of automated model decisions, regulatory compliance, and security audits of ML models. Explainable ML (i.e. explainable artificial intelligence or XAI) has been implemented in numerous open source and commercial packages and explainable ML is also an important, mandatory, or embedded aspect of commercial predictive modeling in industries like financial services. However, like many technologies, explainable ML can be misused, particularly as a faulty safeguard for harmful black-boxes, e.g. fairwashing or scaffolding, and for other malevolent purposes like stealing models and sensitive training data. To promote best-practice discussions for this already in-flight technology, this short text presents internal definitions and a few examples before covering the proposed guidelines. This text concludes with a seemingly natural argument for the use of interpretable models and explanatory, debugging, and disparate impact testing methods in life- or mission-critical ML systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Patrick Hall (17 papers)
  2. Navdeep Gill (2 papers)
  3. Nicholas Schmidt (2 papers)
Citations (30)