Papers
Topics
Authors
Recent
Search
2000 character limit reached

Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation

Published 6 Jun 2019 in math.ST, cs.CR, cs.DS, and stat.TH | (1906.02830v1)

Abstract: The simplest and most widely applied method for guaranteeing differential privacy is to add instance-independent noise to a statistic of interest that is scaled to its global sensitivity. However, global sensitivity is a worst-case notion that is often too conservative for realized dataset instances. We provide methods for scaling noise in an instance-dependent way and demonstrate that they provide greater accuracy under average-case distributional assumptions. Specifically, we consider the basic problem of privately estimating the mean of a real distribution from i.i.d.~samples. The standard empirical mean estimator can have arbitrarily-high global sensitivity. We propose the trimmed mean estimator, which interpolates between the mean and the median, as a way of attaining much lower sensitivity on average while losing very little in terms of statistical accuracy. To privately estimate the trimmed mean, we revisit the smooth sensitivity framework of Nissim, Raskhodnikova, and Smith (STOC 2007), which provides a framework for using instance-dependent sensitivity. We propose three new additive noise distributions which provide concentrated differential privacy when scaled to smooth sensitivity. We provide theoretical and experimental evidence showing that our noise distributions compare favorably to others in the literature, in particular, when applied to the mean estimation problem.

Citations (71)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.